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Power System Blackouts

- The Northeast blackout of 2003 (55
/"« million people) is the third most
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widespread black in history (1999
Southern Brazil blackout — affected 97
million people, July 2012 Indian —
affected ~670 million people).

630 millions of customer minutes not
met — earthquake of M6.3 — February
22, 2011 (hours of weeks of power
loss). The longest in the history of
major natural events in Christchurch.

Power grid is the critical infrastructure
of all critical infrastructures (including
communication, water and gas
distribution, and transportation).
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Control Center Innovations

« Major blackouts have triggered outbursts of research that
eventually led to significant technological breakthroughs.

 The real-time static security analysis tools were introduced In
response to the Northeast blackout of 1965.

 The seminal paper! was written by the major blackout of 1978
In France.

* Real-time detection of the risk of instability can be traced to the
wave of blackouts that US, UK, and the mainland Europe
utilities in 2003.

* The online calculation of the loadability limits is essential for the
effective and efficient utilization of a power system network,
particularly in an open access environment.

* In the past, the computational capabilities were a bottle-neck,
but now we have tons (tera-scale/peta-scale) of computing
power.

1Barbier, C. and Barret, J. P., “An Analysis of Phenomena of Voltage Collapse on a Transmission Systems,” RGE, special edition CIGRE, July 1980, pp. 3-21.
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Time Scales for Power System Control

Tie Line Power and
Frequency Control

Turbine Control

Voltage Control

Protection

1/10 1 10 100 Time (s)
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Time Scales for Power System Control

0-5 seconds:

5s5s—10 mins.:

10 mins. — 4 hours:

5 sec.— 4 hours:

4 hours — 1 week:

1 week — 6 months:

6 months — years:

Automatic Voltage Regulation (AVR)
Equipment Control Protection

Load Frequency Control (LFC)
Automatic Generation Control (AGC)

Economic Dispatch (ED)

Security Assessment, Voltage
and Frequency Stability

Unit Commitment (UC)
Maintenance
System Planning (Off Line)
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Smart Grid

A smart grid must have certain basic functions for
modernization of the grid (as indicated in the Energy
Independence and Security Act (EISA) of 2007),
Including:
= Self-healing

Fault-tolerant

= Dynamic integration of all forms of energy generation & storage

Dynamic optimization of grid operation and resources with full
cyber-security

Smart grid’'s growing complexity requires different

approaches to traditional methods of modeling,
control and optimization in power systems.
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Situational Awareness (SA) in a Control Cente

« When a disturbance happens, the operator
IS thinking: :

* Received a new alert!

* Is any limitin violation?

e If so, how bad?

 Problem location?

 Whatis the cause?
 Any possible immediate corrective or mitigative

action?

 Whatis the action?

 Immediate implementation or can it wait?
 Has the problem been addressed?

* Any follow up action needed?

« SA is aimed at looking into a complex
system from many different perspectives in
a holistic manner.

e Local regions are viewed microscopically
and the entire system is viewed
macroscopically.

Monitoring using

PMUs, SCADA, etc.

y Situational Awareness s

real trme svstem

states
w

' Comprehension
of real-time
situation

Projection/
prediction of near-
future states

Decision-Making

Actions on
Power System
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SA for Power Transmission Systems4&®

« Dynamic model validation
e Online monitoring of system loading
 Load modeling — virtual real-time loads
« Real-time small signal analysis
* Real-time voltage stablility assessment
e Synchrophasor data
 Model
e Transmission system stress — phase angle difference
e State estimation
 Transmission system (bus voltage magnitude and
angle)
« Detection of bad PMU data (17% of 56 PMUSs)
 Rea-time security indicators (nomograms)
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G CLEMSON

W U N VE RS I TY

SA for Renewable Energy Systems \

* \oltage sensitivity analysis

« Small signal analysis — low frequency oscillations and
damping ratios

e Monitoring of renewable (wind and solar) generations

* Forecasting of renewable generations

 ‘Renewable’ stress — separate stress in the transmission
system contributed by renewable generation plants
 Real-time
* Forecast

 Demand-response and improved grid reliability
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PMU (Sensor) Placement

» ldeally - every bus of the grid but economically not
practical

« Data requirements for multiple synchrophasor
applications

e Guidelines:
 HV substations
« Large power plants
e Major transmission corridors
 Remedial action schemes based substations
 Renewable generation plants
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Hierarchy for PMU Systems

* Depending on applications, optimal locations of PMUs will be
determined.

 PMUs, communication links, and data concentrators must exist in
order to realize the full benefit of the PMU measurement system.

Independent System Operator (ISO)
Super Data Concentrator

Security Gateway

Security Gateway Security Gateway Security Gateway

Data storage

Utility ‘A" Control Center Utility ‘B’ Control Center Utility ‘C’ Control Center
Data Concentrator Data Concentrator Data Concentrator

Security Gateway Applications Security Gateway Security Gateway

Security Gateway Applications Security Gateway ) ] Security Gateway 1
1 1 1
1 1 1
Substation #1 Substation #2 leoeo | Substation #m !
. 1 1 1
I " I
PMU #2 PMU #2 1 1 PMU #2 X 1
1 1 = 1
' i Y
1 \ 7
~ rd

— o o o o o e o o
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Integrate historical and real-time data to implement near-future
situational awareness

Intelligence (near-future) =
function(history, current status, some predictions)

Predict security and stability limits
* RT operating conditions
» Oscillation monitoring
 Dynamic models
* Forecast load
* Predict/forecast generation
« Contingency analysis
Advanced visualization
* Integrate all applications

» Topology updates and geographical influence (Pl and GIS —
Google earth tools)
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Computational Systems
Thinking Machine (CSTM)

 To handle an evolving, uncertain, variable and complex
smart grid — three strands of thinking are needed for

® Sense'mak|ng Cgmputatlon\
Communication

« Decision-making (Actionable Information)
Control ’

o Adaptation
 |n the center of all these strands exist a ‘reg_l;gime wealth
of knowledge’ P
e Continuous refinement r

e |Learns and unlearns

Ung
h forn,ati,;,n l m m

Real-Time
: Weal_th of |*
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Co-existence of CSTMs

Co-existence of CSTMs is essential for smart grid

operations
e Harmony
o Coordination
« Communication

-
-
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Real-Time Power & Intelligent Systems
(RTPIS) Lab

e Real-Time Grid Simulation Lab.
e Situational Intelligence Lab.
e Microgrid and Power Electronics Lab.
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Real-Time Grid Simulation with
Hardware-in-the-Loop Microgrid
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SIL Facilities

High-speed
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Cellular Computational Networks

O Cellular computational networks (CCNs) generally mean
computational units connected to each other.
0O Cells are usually collocated and trained synchronously.

i ) {

<> < < > <>
<: Generic
N N N |:: Cell
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4 ED Computational Unit
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Learning Unit
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[ . i o Communication Unit
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Wide Area Monitoring Systems (WAMS)

e Each cell represents one
generator of a multi-
machine power system -
Each cell predicts speed.
deviation of one generator

e The cells are connected to
each other in the same
way as the components in
the physical system.

e Nearest neighbors
topology is used (n=2) to
reduce complexity.
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Scalable WAMS based on CCN
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Scalable WAMS based on CCN

X

x 107 R /md_w\\ﬁ/fv

2F ' ' ' 7 S SEn®

g 0 . o MM
w2 © 10

2 F ] 1 1 1 1 & //\/ E
10 15 20 25 30 Actual < Lk

e L 7

% 10 Predicted g o= \,_

2F T - k10 =

Btg

-3

Sy

B 10

g

pe 10

g

Bty

By

Sty 5

ey 5

Bugg

Sty

Sty

PMOM MO MR O R ON RO R R DR RO N RO R R O R D R D R O R D R RO R DRSNS
T —T —T —T — —T — —T —T T

1 1 1 1 1
14 15 16 17 18 19
Time (s)

o
ok
w

© G. Kumar Venayagamoorthy, NERC Conference on Improving Human Performance on the Grid, Atlanta, GA, March 28, 2013




Yy T Ve B |
GJCLEMSON
"W UNIVERSTITY

Asynchronous Learning in CCNoW®
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Freqguency Modes from CCN Predictions

Actual Predicted Error %
MmN 'y Wy E Empy E;
Mode 1 06023 01489 06035 01476 0.1992  0.13

Gl
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Luitel B, Venayagamoorthy GK, “Decentralized Asynchronous Learning in et

Cellular Neural Networks”, IEEE Transactions on Neural Networks,
November 2012, vol. 23. no. 11, pp. 1755-1766,
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Online CCN based Monitoring Systems
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Online CCN based Monitoring Systems
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Situational Intelligence - VSLI
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Situational Intelligence — TSM
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Situational Intelligence - VSLI
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Situational Intelligence - TSM
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Online & Real-Time Situational Intelligence
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Clemson’s SA/SI Research and Education$

Improved situational awareness at control centers
» Power system operators
* Regional reliability coordinators
 Improved and effective wide area system monitoring and
visualization using real-time data
* Online assessment of system stress in respective regions
* Awareness of on-going disturbances
* Receive early warnings of potential stability-threatening events
* Pilot studies prior to deployment
e Educate students at Clemson in power system operations
e Integrate into graduate research and teaching
e Undergraduate research and senior design projects
o Certificate programs
e Short courses to utilities — power system dynamics,
synchrophasors, system control procedures.
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Thank.You!

~  G. Kumar Venayagamoor

Dirﬁcfi;)f the Real-Ti ‘an

Duke Eﬁ‘e Distinguishe: fessor of Elec and Computer Efgineering
e C[@‘E‘é‘ﬁ University, ClemsongSC 29634 ?fg -
http://rtpis.org : ~ N .
gkumar@ieee.org.. -
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